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Epidemics and percolation in small-world networks
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We study some simple models of disease transmission on small-world networks, in which either the prob-
ability of infection by a disease or the probability of its transmission is varied, or both. The resulting models
display epidemic behavior when the infection or transmission probability rises above the threshold for site or
bond percolation on the network, and we give exact solutions for the position of this threshold in a variety of
cases. We confirm our analytic results by numerical simulation.

PACS numbes): 87.23.Ge, 05.46-a, 05.70.Jk, 64.60.Fr

I. INTRODUCTION to finite-sized lattice$9]. Infection with 100% efficiency is
not a particularly realistic model, however, even for spec-
It has long been recognized that the structure of socialacularly virulent diseases like Ebola fever, so Newman and
networks plays an important role in the dynamics of diseas&Vatts also suggested using a site percolation model for dis-
propagation. Networks showing the “small-world” effect €ase spreading in which some fractiprof the population
[1,2], where the number of “degrees of separation” betweer@re considered susceptible to the disease, and an initial out-
any two members of a given population is small by comparibreak can spread only as far as the limits of the connected
son with the size of the population itself, show much fastercluster of susceptible individuals in which it first strikes. An
disease propagation than, for instance, simple diffusion mocépidemic can occur if the system is at or above its percola-
els on regular lattices. tion threshold, where the size of the largest cluster becomes
Milgram [3] was one of the first to point out the existence comparable with the size of the entire population. Newman
of small-world effects in real populations. He performed ex-and Watts gave an approximate solution for the fracpgn
periments which suggested that there are only about six iref susceptible individuals at this epidemic point, as a func-
termediate acquaintances separating any two people on ti@n of the density of shortcuts on the lattice. In this paper we

planet, which in turn suggests that a highly infectious diseas@lerive an exact solution, and also look at the case in which
could spread to all six billion people on the planet in only transmission between individuals takes place with less than

about six incubation periods of the disease. 100% efficiency, which can be modeled as a bond percola-

Early models of this phenomenon were based on randorffon process.
graphg4,5]. However, random graphs lack some of the cru-
cial properties of real social networks. In particular, social Il. SITE PERCOLATION
networks show “clustering,” in which the probability of two
people knowing one another is greatly increased if they have Two simple parameters of interest in epidemiology are
a common acquaintan¢6]. In a random graph, by contrast, susceptibility the probability that an individual exposed to a
the probability of there being a connection between any twalisease will contract it, anttansmissibility the probability
people is uniform, regardless of which two you choose.  that contact between an infected individual and a healthy but
Watts and Strogatf6] have recently suggested a new susceptible one will result in the latter contracting the dis-
small-world model which has this clustering property, andease. In this paper, we assume that a disease begins with a
has only a small average number of degrees of separatiasgingle infected individual. Individuals are represented by the
between any two individuals. In this paper we use a variansites of a small-world model and the disease spreads along
of the Watts-Strogatz modgT] to investigate disease propa- the bonds, which represent contacts between individuals. We
gation. In this variant, the population lives on a low- denote the sites as being occupied or not depending on
dimensional lattice(usually a one-dimensional on&vhere  whether an individual is susceptible to the disease, and the
each site is connected to a small number of neighboring siteonds as being occupied or not depending on whether a con-
A low density of “shortcuts” is then added between ran- tact will transmit the disease to a susceptible individual. If
domly chosen pairs of sites, producing much shorter typicathe distribution of occupied sites or bonds is random, then
separations, while preserving the clustering property of thehe problem of when an epidemic takes place becomes
regular lattice. equivalent to a standard percolation problem on the small-
Newman and Watt§7] gave a simple differential equa- world graph: what fractionp, of sites or bonds must be
tion model for disease propagation on an infinite small-worldoccupied before a “giant component” of connected sites
graph in which communication of the disease takes placéorms whose size scales extensively with the total nunhber
with 100% efficiency—all acquaintances of an infected per-of sites[10]?
son become infected at the next time step. They solved this We will start with the site percolation case, in which ev-
model for the one-dimensional small-world graph, and theery contact of a healthy but susceptible person with an in-
solution was later generalized to higher dimensif8lsand  fected person results in transmission, but less than 100% of
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below the percolation threshold the are small and so the
v{ will depend linearly on the; according to a transition
matrix M thus:

Ui,:; Mijvjv (4)

where
M =Ni[1—(1—y)"]. 5

Here N; is the number of local clusters of sizeas before,
and 1-(1— ¢)" is the probability of a shortcut from a local
cluster of sizel to one of sizg, since there arg possible
FIG. 1. A small-world graph with. =24, k=1, and four short-  pajrs of sites by which these can be connected. NoteMhat
cuts. The gray sites represented susceptible individuals. The SUSCEB-not a stochastic matrix, i.e., it is not normalized so that its
tibility is p= 2 in this example. rows sum to unity.
S ) ) ) Now consider the largest eigenvalaeof M. If A<1,
the |n_d|V|duz_1Is are susceptlb_le_._The f_ractlpmf occupied iterating Eq.(4) makesv tend to zero, so that the rate at
sites is precisely the susceptibility defined above. \yhich new local clusters are added falls off exponentially,
Consider a one-dimensional small-world graph as in Figang the connected clusters are finite with an exponential size
1. L sites are arranged on a one-dimensional lattice Withyistripution. Conversely, ik>1, v grows until the size of
periodic boundary conditions and bonds connect all pairs ofye clyster becomes limited by the size of the whole system.
sites that are separated by a distancé of less.(For sim-  The percolation threshold occurs at the point 1.
plicity we have chosek=1 in the figure) Shortcuts are now For finite L finding the largest eigenvalue ® is diffi-
added between randomly chosen pairs of sites. It is standaggq,;. However, if ¢ is held constanty tends to zero at
to define the parametef to be the average number of short- .o, so for largeL we can approximaté! as
cuts per bond on the underlying lattice. The probability that

:\é\/é)nrandomly chosen sites have a shortcut between them is Mij=ij ¥N; . (6)
CoL This matrix is the outer product of two vectors, with the
2 \*t 2k result that Eq(4) can be simplified to
Y=1-\1-=2| =" D

for largeL. )\Ui:“ﬁNiEj: juj, (7)
A connected cluster on the small-world graph consists of
a number oflocal clusters—occupied sites that are con- where we have sat/ =\v;. Thus, the eigenvectors i

nected together by the near-neighbor bonds on the underlyrave the formy;=Cx i N, whereC=3jv; is a constant.
ing one-dimensional lattice—which are themselves conjiminating C then gives

nected together by shortcuts. Hor 1, the average number
of local clusters of length is

_ A=y j°N;. )
Ni=(1-p)?p'L. 2) ]
For k=1, this gi
For generak we have or , this gives
i— i— 1+p 1+p
Ni=(1=p)*pl1=(1=p) T L= (1=a)%pa L, NEULPITp 2Py ©)

)

whereq=1-(1—p)~. Setting\ =1 yields the value ofp at the percolation thresh-

Now we build a connected cluster out of these local clus-Old Pe-
ters as follows. We start with one particular local cluster, and 1-p
first add to it all other local clusters that can be reached by b= —, (10)
traveling along a single shortcut. Then we add all local clus- 2p(1+pc)
ters that can be reached from those new ones by traveling ) )
along a single shortcut, and so forth until the connected clus@nd solving forp. gives
ter is complete. Let us define a vectoat each step in this
process, whose components are equal to the probability AP+ 12¢+1-2¢-1 11
that a local cluster of siziehas just been added to the overall Pe= 4¢ '

connected cluster. We wish to calculate the vallef this
vector in terms of its values at the previous step. At or For generak, we have
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1+q 2—(1-p)k same local cluster of size when only bonds to the left of
A= z/;LplT=2k¢p — (12)  siten are taken into account. Similarly, 1€;; be the prob-
q (1-p) ability thatn andn—1 are part of two separate local clusters

of sizei andj, respectively, again when only bonds to the left

or, at the threshold, of n are considered. Then, by considering site 1 which

(1—po)¥ has possible connections to batrandn—1, we can show
= . (13 that
2kpc[2— (1= pc)"]
The threshold densitp. is then a root of a polynomial of (1-p)? Qj+2 Qjk| for i=0
orderk+1. Qi+1j= k (15

p(1-p)Q; for i=1,
lIl. BOND PERCOLATION
and

An alternative model of disease transmission is one in
which all individuals are susceptible, but transmission takes )
place with less than 100% efficiency. This is equivalent to Qi+1=p(2-P)Qi+p(1-p) X Qij+p° 2 Q-
bond percolation on a small-world graph—an epidemic sets . = (16)
in when a sufficient fractiop. of the bondson the graph are
occupied to cause the formation of a giant component whosg we define generating functionsH(z)=2;Q;z and
size scales extensively with the size of the graph. In thiq(z,w)==3, jQijZin, this gives us
model the fractiorp of occupied bonds is the transmissibility '
of the disease. H(z,w)=2z(1—p)’[H(W)+H(w,1)]+zp(1—p)H(W,z),

For k=1, the percolation thresholgd, for bond percola- (1
tion is the same as for site percolation for the following
reason. On the one hand, a local cluster sites now con- H(z)=zp(2—p)H(z)+zp(1—p)H(z,1) + zp*H(z,2).
sists ofi —1 occupied bonds with two unoccupied ones at (18

either end, so that the number of local clusters sites is ] ) ) ]
Since any pair of adjacent sites must belong to some cluster

N,=(1-p)?p' L, (14)  or clusters(possibly of size J, the probabilitiesQ; and Q;;

. . ] . must sum to unity according ®,Q;+ 2; ;Q;;=1, or equiva-
which has one less factor @f than in t_h_e site percolation lently H(1)+H(1,1)=1. Finally, the density of clusters of
case. On the other hand, the probability of a shortcut besjzej is equal to the probability that a randomly chosen site
tween two random sites now has an extra factop of it—it s the rightmost site of such a cluster, in which case neither
is equal toyp instead of justy. The two factors op cancel  of the two bonds to its right is occupied. Taken together,

and we end up with the same expression for the eigenvalu@ese results imply that the generating function for clusters,
of M as before, Eq(9), and the same threshold density, Eq. G(z)==.N.Z, must satisfy

(17).

For k>1, calculatingN; is considerably more difficult. G(2)=(1-p)qH(z)+H(z1D)]. (19
We will solve the cas&=2. Let Q; denote the probability
that a given siten and the siten—1 to its left are part of the Solving Egs.(17) and(18) for H(z) andH(z,1) then gives

z(1-p)*(1—-2pz+p3(1—2)z+p?2?)

G(z)= , 20
@ 1—4pz+p°(2—32)2°—p8(1—2) 2>+ p*z%(1+ 32) + p?z(4+ 32) — p3z(1+ 52+ %) (20
|

the first few terms of which give which, settingk=2, implies that the percolation threshgig

is given by

N /L=(1-p)* (21
Na/L=2p(1-p)®, (22) - (1-po)*(1—pctpd) 5
- 2 nn3_ o4 5 564"
N3/L:p2(1_p)6(6_8p+3p2)- (23) 4pc(1+3pc 3pc 2p0+5pc 2pc)

Again replacingy with p, Eq. (8) becomes

d 2
(zd—z) G(z)

In theory it is possible to extend the same method to larger
values ofk, but the calculation rapidly becomes tedious and
, (24)  so we will, for the moment at least, move on to other ques-

A=yp>, i?N;=2k¢p
! =1 tions.
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IV. SITE AND BOND PERCOLATION 1.0 i
The most general disease propagation model of this type L
is one in which both the susceptibility and the transmissibil- o 08
ity take arbitrary values, i.e., the case in which sites and 2 i
bonds are occupied with probabilities;. and pyong, respec- 2 06
tively. For k=1, a local cluster of sizé then consists of £ [
susceptible individuals with—1 occupied bonds between g 04 |
them, so that = T
8
. L (] B
Nij=(1— psitepbond)zplsiteplbor}d' (26) 202 i
Replacingy with ¢ppong in Eq. (8) gives 0.0 Lo vod vl o il ol il ol
. 10" 10° 107 10 10° 107 107 10’
. p
A= ‘//pbond; ]2Nj22¢pry 27 shortcut density ¢

. FIG. 2. The points are numerical results for the percolation
wherep = psjte Ppong- IN other words, the position of the per- yeshold as a function of shortcut densigyfor systems of size

colation transition is given by precisely the same expressio — 1¢f, | eft panel: site percolation witk=1 (circles, 2 (square
as before except that is now the product of the site and ang 5(triangles. Right panel: bond percolation with=1 (circles
bond probabilities. The critical value of this product is thenand 2 (squares Each point is averaged over 1000 runs and the
given by Eq.(11). The case ok>1 we leave as an open resulting statistical errors are smaller than the points. The solid lines

problem for the intereste@and courageougeader. are the analytic expressions for the same quantities, (Edjs.(13),
and(25). The slight systematic tendency of the numerical results to
V. NUMERICAL CALCULATIONS overestimate the value @; is a finite-size effect which decreases

both with increasing system size and with increasinf2].
We have performed extensive computer simulations of

percolation and disease spreading on small-world network%emics should appear if the susceptibility within the popula-

both as a check on our analytic results, and to investigata.‘On exceed.=0.401. The curves in the figure atzom
. : =0.401.
further the behavior of the models. First, we have measureq ) v upwardp=0.40, 0.45, 0.50, 0.55, and 0.60, and,

the position of the percolation threshold for both site and

bond percolation for comparison with our analytic results Aas we can see, the number of new cases of the disease for
naive algorithm for doing this fills in either the sites or the p=0.40 shows only a small peak of activitparely visible

bonds of the lattice one by one in some random order an long the lower axis of the graphefore the disease fizzles

. X . h lation th
calculates at each step the size of either the average or t%yt Once we get above the percolation thresigid upper

largest cluster of connected sites. The position of the perco- ur curves a large number of cases appear, as expected,
lation threshold can then be estimated from the point at
which the derivative of this size with respect to the number 30000
of occupied sites or bonds takes its maximum value. Since
there areO(L) sites or bonds on the network in total and
finding the clusters takes tin@(L), such an algorithm runs
in time O(L?). A more efficient way to perform the calcula-
tion, rather than recreating all clusters at each step in the
algorithm, is to calculate the new clusters from the ones at
the previous step. By using a treelike data structure to store
the clusterg11], one can in this way reduce the time needed
to find the value ofp, to O(L logL). In Fig. 2 we show
numerical results fop, from calculations of the largest clus- L
ter size using this method for systems of one million sites 0= i ' . L=
with various values ok, for both bond and site percolation. 0 50 100 150 200
As the figure shows, the results agree well with our analytic time #
expressions for the same quantities over several orders of
ma[g)ir:glcj;?ec(lj?\?i.rmation that the percolation point in thesefunction of time in simulations of the site percolation model with

. ~L=10, k=5, and¢=0.01. The top four curves are fgr=0.60,
models does indeed correspond to the threshold at whic .55, 0.50, and 0.45, all of which are above the predicted percola-

e_pidem_ics first _appear can also be obtained by numeric%n threshold ofp,=0.401 and show evidence of the occurrence of
simulation. In Fig. 3 we show results for the number of newg psiantial epidemics. A fifth curve, far=0.40, is plotted but is

cases of a disease appearing as a function of time in simulgjryally invisible next to the horizontal axis because even fraction-

tions of the site percolation modéMery similar results are  ally below the percolation threshold no epidemic behavior takes
found in simulations of the bond percolation mogléh.these  place. Each curve is averaged over 1000 repetitions of the simula-
simulations we tookk=5 and a value ofp=0.01 for the tion. Inset: the total percentage of the population infected as a func-
shortcut density, which implies, following E¢LJ), that epi-  tion of time in the same simulations.

40 L
20000

20

percentage infected

f !
0 50 100 150 200
time ¢ 7

10000 — —

number of new cases appearing
(=]

FIG. 3. The number of new cases of a disease appearing as a
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indicating the onset of epidemic behavior. In the simulationgder both site and bond percolation. These results provide
depicted, epidemic disease outbreaks typically affected besimple models for the onset of epidemic behavior in diseases
tween 50% and 100% of the susceptible individuals, comfor which either the susceptibility or the transmissibility is
pared with about 5% in the subcritical case. There is also &ess than 100%. We have also looked briefly at the case of
significant tendency for epidemics to spread more quicklysimultaneous site and bond percolation, in which both sus-
(and in the case of self-limiting diseases presumably also toeptibility and transmissibility can take arbitrary values. We
die out sooneérin populations that have a higher susceptibil- have performed extensive numerical simulations of disease
ity to the disease. This arises because in more susceptibtaitbreaks in these models, confirming both the position of
populations there are more paths for the infection to takehe percolation threshold and the fact that epidemics take
from an infected individual to an uninfected one. Theplace above this threshold only.
amount of time an epidemic takes to spread throughout the Finally, we point out that the method used here can in
population is given by the average radiugiicé., path length  principle give an exact result for the site or bond percolation
within) connected clusters of susceptible individuals, a quanthreshold on a small-world graph with any underlying lattice
tity which has been studied in Rdf]. for which we can calculate the density of local clusters as a

In the inset of Fig. 3 we show the overéille., integratel  function of their size. If, for instance, one could enumerate
percentage of the population affected by the disease as lattice animals on lattices of two or more dimensions, then
function of time in the same simulations. As the figurethe exact percolation threshold for the corresponding small-
shows, this quantity takes a sigmoidal form similar to thatworld model would follow immediately.
seen also in random-graph modgs5], simple small-world
disease modelg7], and indeed in real-world data.
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