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Epidemics and percolation in small-world networks
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We study some simple models of disease transmission on small-world networks, in which either the prob-
ability of infection by a disease or the probability of its transmission is varied, or both. The resulting models
display epidemic behavior when the infection or transmission probability rises above the threshold for site or
bond percolation on the network, and we give exact solutions for the position of this threshold in a variety of
cases. We confirm our analytic results by numerical simulation.

PACS number~s!: 87.23.Ge, 05.40.2a, 05.70.Jk, 64.60.Fr
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I. INTRODUCTION

It has long been recognized that the structure of so
networks plays an important role in the dynamics of dise
propagation. Networks showing the ‘‘small-world’’ effec
@1,2#, where the number of ‘‘degrees of separation’’ betwe
any two members of a given population is small by compa
son with the size of the population itself, show much fas
disease propagation than, for instance, simple diffusion m
els on regular lattices.

Milgram @3# was one of the first to point out the existen
of small-world effects in real populations. He performed e
periments which suggested that there are only about six
termediate acquaintances separating any two people on
planet, which in turn suggests that a highly infectious dise
could spread to all six billion people on the planet in on
about six incubation periods of the disease.

Early models of this phenomenon were based on rand
graphs@4,5#. However, random graphs lack some of the c
cial properties of real social networks. In particular, soc
networks show ‘‘clustering,’’ in which the probability of two
people knowing one another is greatly increased if they h
a common acquaintance@6#. In a random graph, by contras
the probability of there being a connection between any
people is uniform, regardless of which two you choose.

Watts and Strogatz@6# have recently suggested a ne
small-world model which has this clustering property, a
has only a small average number of degrees of separa
between any two individuals. In this paper we use a vari
of the Watts-Strogatz model@7# to investigate disease propa
gation. In this variant, the population lives on a low
dimensional lattice~usually a one-dimensional one! where
each site is connected to a small number of neighboring s
A low density of ‘‘shortcuts’’ is then added between ra
domly chosen pairs of sites, producing much shorter typ
separations, while preserving the clustering property of
regular lattice.

Newman and Watts@7# gave a simple differential equa
tion model for disease propagation on an infinite small-wo
graph in which communication of the disease takes pl
with 100% efficiency—all acquaintances of an infected p
son become infected at the next time step. They solved
model for the one-dimensional small-world graph, and
solution was later generalized to higher dimensions@8# and
PRE 611063-651X/2000/61~5!/5678~5!/$15.00
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to finite-sized lattices@9#. Infection with 100% efficiency is
not a particularly realistic model, however, even for spe
tacularly virulent diseases like Ebola fever, so Newman a
Watts also suggested using a site percolation model for
ease spreading in which some fractionp of the population
are considered susceptible to the disease, and an initial
break can spread only as far as the limits of the connec
cluster of susceptible individuals in which it first strikes. A
epidemic can occur if the system is at or above its perco
tion threshold, where the size of the largest cluster beco
comparable with the size of the entire population. Newm
and Watts gave an approximate solution for the fractionpc
of susceptible individuals at this epidemic point, as a fun
tion of the density of shortcuts on the lattice. In this paper
derive an exact solution, and also look at the case in wh
transmission between individuals takes place with less t
100% efficiency, which can be modeled as a bond perc
tion process.

II. SITE PERCOLATION

Two simple parameters of interest in epidemiology a
susceptibility, the probability that an individual exposed to
disease will contract it, andtransmissibility, the probability
that contact between an infected individual and a healthy
susceptible one will result in the latter contracting the d
ease. In this paper, we assume that a disease begins w
single infected individual. Individuals are represented by
sites of a small-world model and the disease spreads a
the bonds, which represent contacts between individuals.
denote the sites as being occupied or not depending
whether an individual is susceptible to the disease, and
bonds as being occupied or not depending on whether a
tact will transmit the disease to a susceptible individual.
the distribution of occupied sites or bonds is random, th
the problem of when an epidemic takes place becom
equivalent to a standard percolation problem on the sm
world graph: what fractionpc of sites or bonds must be
occupied before a ‘‘giant component’’ of connected sit
forms whose size scales extensively with the total numbeL
of sites@10#?

We will start with the site percolation case, in which e
ery contact of a healthy but susceptible person with an
fected person results in transmission, but less than 100%
5678 ©2000 The American Physical Society
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the individuals are susceptible. The fractionp of occupied
sites is precisely the susceptibility defined above.

Consider a one-dimensional small-world graph as in F
1. L sites are arranged on a one-dimensional lattice w
periodic boundary conditions and bonds connect all pairs
sites that are separated by a distance ofk or less.~For sim-
plicity we have chosenk51 in the figure.! Shortcuts are now
added between randomly chosen pairs of sites. It is stan
to define the parameterf to be the average number of sho
cuts per bond on the underlying lattice. The probability th
two randomly chosen sites have a shortcut between the
then

c512S 12
2

L2D kfL

.
2kf

L
~1!

for largeL.
A connected cluster on the small-world graph consists

a number of local clusters—occupied sites that are con
nected together by the near-neighbor bonds on the und
ing one-dimensional lattice—which are themselves c
nected together by shortcuts. Fork51, the average numbe
of local clusters of lengthi is

Ni5~12p!2piL. ~2!

For generalk we have

Ni5~12p!2kp@12~12p!k# i 21L5~12q!2pqi 21L,
~3!

whereq512(12p)k.
Now we build a connected cluster out of these local cl

ters as follows. We start with one particular local cluster, a
first add to it all other local clusters that can be reached
traveling along a single shortcut. Then we add all local cl
ters that can be reached from those new ones by trave
along a single shortcut, and so forth until the connected c
ter is complete. Let us define a vectorv at each step in this
process, whose componentsv i are equal to the probability
that a local cluster of sizei has just been added to the over
connected cluster. We wish to calculate the valuev8 of this
vector in terms of its valuev at the previous step. At o

FIG. 1. A small-world graph withL524, k51, and four short-
cuts. The gray sites represented susceptible individuals. The su
tibility is p5

3
4 in this example.
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below the percolation threshold thev i are small and so the
v i8 will depend linearly on thev i according to a transition
matrix M thus:

v i85(
j

M i j v j , ~4!

where

Mi j 5Ni@12~12c! i j #. ~5!

Here Ni is the number of local clusters of sizei as before,
and 12(12c) i j is the probability of a shortcut from a loca
cluster of sizei to one of sizej, since there arei j possible
pairs of sites by which these can be connected. Note thaM
is not a stochastic matrix, i.e., it is not normalized so that
rows sum to unity.

Now consider the largest eigenvaluel of M . If l,1,
iterating Eq.~4! makesv tend to zero, so that the rate a
which new local clusters are added falls off exponentia
and the connected clusters are finite with an exponential
distribution. Conversely, ifl.1, v grows until the size of
the cluster becomes limited by the size of the whole syst
The percolation threshold occurs at the pointl51.

For finite L finding the largest eigenvalue ofM is diffi-
cult. However, iff is held constant,c tends to zero asL
→`, so for largeL we can approximateM as

Mi j 5 i j cNi . ~6!

This matrix is the outer product of two vectors, with th
result that Eq.~4! can be simplified to

lv i5 icNi(
j

j v j , ~7!

where we have setv i85lv i . Thus, the eigenvectors ofM
have the formv i5Cl21icNi whereC5( j j v j is a constant.
Eliminating C then gives

l5c(
j

j 2Nj . ~8!

For k51, this gives

l5cLp
11p

12p
52fp

11p

12p
. ~9!

Settingl51 yields the value off at the percolation thresh
old pc :

f5
12pc

2pc~11pc!
, ~10!

and solving forpc gives

pc5
A4f2112f1122f21

4f
. ~11!

For generalk, we have

ep-
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l5cLp
11q

12q
52kfp

22~12p!k

~12p!k
, ~12!

or, at the threshold,

f5
~12pc!

k

2kpc@22~12pc!
k#

. ~13!

The threshold densitypc is then a root of a polynomial o
orderk11.

III. BOND PERCOLATION

An alternative model of disease transmission is one
which all individuals are susceptible, but transmission ta
place with less than 100% efficiency. This is equivalent
bond percolation on a small-world graph—an epidemic s
in when a sufficient fractionpc of thebondson the graph are
occupied to cause the formation of a giant component wh
size scales extensively with the size of the graph. In t
model the fractionp of occupied bonds is the transmissibili
of the disease.

For k51, the percolation thresholdpc for bond percola-
tion is the same as for site percolation for the followi
reason. On the one hand, a local cluster ofi sites now con-
sists of i 21 occupied bonds with two unoccupied ones
either end, so that the number of local clusters ofi sites is

Ni5~12p!2pi 21L, ~14!

which has one less factor ofp than in the site percolation
case. On the other hand, the probability of a shortcut
tween two random sites now has an extra factor ofp in it—it
is equal tocp instead of justc. The two factors ofp cancel
and we end up with the same expression for the eigenv
of M as before, Eq.~9!, and the same threshold density, E
~11!.

For k.1, calculatingNi is considerably more difficult.
We will solve the casek52. Let Qi denote the probability
that a given siten and the siten21 to its left are part of the
n
s

o
ts

se
is

t

-

ue
.

same local cluster of sizei, when only bonds to the left o
site n are taken into account. Similarly, letQi j be the prob-
ability thatn andn21 are part of two separate local cluste
of sizei andj, respectively, again when only bonds to the le
of n are considered. Then, by considering siten11 which
has possible connections to bothn and n21, we can show
that

Qi 11,j5H ~12p!2FQj1(
k

QjkG for i 50

p~12p!Qji for i>1,

~15!

and

Qi 115p~22p!Qi1p~12p!(
j

Qi j 1p2 (
j 1 j 85 i

Qj j 8 .

~16!

If we define generating functionsH(z)5( iQiz
i and

H(z,w)5( i , jQi j z
iwj , this gives us

H~z,w!5z~12p!2@H~w!1H~w,1!#1zp~12p!H~w,z!,
~17!

H~z!5zp~22p!H~z!1zp~12p!H~z,1!1zp2H~z,z!.
~18!

Since any pair of adjacent sites must belong to some clu
or clusters~possibly of size 1!, the probabilitiesQi andQi j
must sum to unity according to( iQi1( i , jQi j 51, or equiva-
lently H(1)1H(1,1)51. Finally, the density of clusters o
size i is equal to the probability that a randomly chosen s
is the rightmost site of such a cluster, in which case neit
of the two bonds to its right is occupied. Taken togeth
these results imply that the generating function for cluste
G(z)5( iNiz

i , must satisfy

G~z!5~12p!2@H~z!1H~z,1!#. ~19!

Solving Eqs.~17! and ~18! for H(z) andH(z,1) then gives
G~z!5
z~12p!4~122pz1p3~12z!z1p2z2!

124pz1p5~223z!z22p6~12z!z21p4z2~113z!1p2z~413z!2p3z~115z1z2!
, ~20!
ger
nd
es-
the first few terms of which give

N1 /L5~12p!4, ~21!

N2 /L52p~12p!6, ~22!

N3 /L5p2~12p!6~628p13p2!. ~23!

Again replacingc with cp, Eq. ~8! becomes

l5cp(
i

i 2Ni52kfpF S z
d

dzD
2

G~z!G
z51

, ~24!
which, settingk52, implies that the percolation thresholdpc
is given by

f5
~12pc!

3~12pc1pc
2!

4pc~113pc
223pc

322pc
415pc

522pc
6!

. ~25!

In theory it is possible to extend the same method to lar
values ofk, but the calculation rapidly becomes tedious a
so we will, for the moment at least, move on to other qu
tions.
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IV. SITE AND BOND PERCOLATION

The most general disease propagation model of this t
is one in which both the susceptibility and the transmissi
ity take arbitrary values, i.e., the case in which sites a
bonds are occupied with probabilitiespsite andpbond, respec-
tively. For k51, a local cluster of sizei then consists ofi
susceptible individuals withi 21 occupied bonds betwee
them, so that

Ni5~12psitepbond!
2psite

i pbond
i 21 . ~26!

Replacingc with cpbond in Eq. ~8! gives

l5cpbond(
j

j 2Nj52fp
11p

12p
, ~27!

wherep5psitepbond. In other words, the position of the pe
colation transition is given by precisely the same express
as before except thatp is now the product of the site an
bond probabilities. The critical value of this product is th
given by Eq.~11!. The case ofk.1 we leave as an ope
problem for the interested~and courageous! reader.

V. NUMERICAL CALCULATIONS

We have performed extensive computer simulations
percolation and disease spreading on small-world netwo
both as a check on our analytic results, and to investig
further the behavior of the models. First, we have measu
the position of the percolation threshold for both site a
bond percolation for comparison with our analytic results
naive algorithm for doing this fills in either the sites or th
bonds of the lattice one by one in some random order
calculates at each step the size of either the average o
largest cluster of connected sites. The position of the pe
lation threshold can then be estimated from the point
which the derivative of this size with respect to the numb
of occupied sites or bonds takes its maximum value. Si
there areO(L) sites or bonds on the network in total an
finding the clusters takes timeO(L), such an algorithm runs
in time O(L2). A more efficient way to perform the calcula
tion, rather than recreating all clusters at each step in
algorithm, is to calculate the new clusters from the ones
the previous step. By using a treelike data structure to s
the clusters@11#, one can in this way reduce the time need
to find the value ofpc to O(L logL). In Fig. 2 we show
numerical results forpc from calculations of the largest clus
ter size using this method for systems of one million si
with various values ofk, for both bond and site percolation
As the figure shows, the results agree well with our analy
expressions for the same quantities over several order
magnitude inf.

Direct confirmation that the percolation point in the
models does indeed correspond to the threshold at w
epidemics first appear can also be obtained by nume
simulation. In Fig. 3 we show results for the number of n
cases of a disease appearing as a function of time in sim
tions of the site percolation model.~Very similar results are
found in simulations of the bond percolation model.! In these
simulations we tookk55 and a value off50.01 for the
shortcut density, which implies, following Eq.~13!, that epi-
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demics should appear if the susceptibility within the popu
tion exceedspc50.401. The curves in the figure are~from
the bottom upward! p50.40, 0.45, 0.50, 0.55, and 0.60, an
as we can see, the number of new cases of the diseas
p50.40 shows only a small peak of activity~barely visible
along the lower axis of the graph! before the disease fizzle
out. Once we get above the percolation threshold~the upper
four curves! a large number of cases appear, as expec

FIG. 2. The points are numerical results for the percolat
threshold as a function of shortcut densityf for systems of size
L5106. Left panel: site percolation withk51 ~circles!, 2 ~squares!,
and 5~triangles!. Right panel: bond percolation withk51 ~circles!
and 2 ~squares!. Each point is averaged over 1000 runs and
resulting statistical errors are smaller than the points. The solid l
are the analytic expressions for the same quantities, Eqs.~11!, ~13!,
and~25!. The slight systematic tendency of the numerical results
overestimate the value ofpc is a finite-size effect which decrease
both with increasing system size and with increasingf @12#.

FIG. 3. The number of new cases of a disease appearing
function of time in simulations of the site percolation model wi
L5106, k55, andf50.01. The top four curves are forp50.60,
0.55, 0.50, and 0.45, all of which are above the predicted perc
tion threshold ofpc50.401 and show evidence of the occurrence
substantial epidemics. A fifth curve, forp50.40, is plotted but is
virtually invisible next to the horizontal axis because even fractio
ally below the percolation threshold no epidemic behavior ta
place. Each curve is averaged over 1000 repetitions of the sim
tion. Inset: the total percentage of the population infected as a fu
tion of time in the same simulations.
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indicating the onset of epidemic behavior. In the simulatio
depicted, epidemic disease outbreaks typically affected
tween 50% and 100% of the susceptible individuals, co
pared with about 5% in the subcritical case. There is als
significant tendency for epidemics to spread more quic
~and in the case of self-limiting diseases presumably als
die out sooner! in populations that have a higher susceptib
ity to the disease. This arises because in more suscep
populations there are more paths for the infection to t
from an infected individual to an uninfected one. T
amount of time an epidemic takes to spread throughout
population is given by the average radius of~i.e., path length
within! connected clusters of susceptible individuals, a qu
tity which has been studied in Ref.@7#.

In the inset of Fig. 3 we show the overall~i.e., integrated!
percentage of the population affected by the disease
function of time in the same simulations. As the figu
shows, this quantity takes a sigmoidal form similar to th
seen also in random-graph models@4,5#, simple small-world
disease models@7#, and indeed in real-world data.

VI. CONCLUSIONS

We have derived exact analytic expressions for the pe
lation threshold on one-dimensional small-world graphs
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der both site and bond percolation. These results prov
simple models for the onset of epidemic behavior in disea
for which either the susceptibility or the transmissibility
less than 100%. We have also looked briefly at the cas
simultaneous site and bond percolation, in which both s
ceptibility and transmissibility can take arbitrary values. W
have performed extensive numerical simulations of dise
outbreaks in these models, confirming both the position
the percolation threshold and the fact that epidemics t
place above this threshold only.

Finally, we point out that the method used here can
principle give an exact result for the site or bond percolat
threshold on a small-world graph with any underlying latti
for which we can calculate the density of local clusters a
function of their size. If, for instance, one could enumera
lattice animals on lattices of two or more dimensions, th
the exact percolation threshold for the corresponding sm
world model would follow immediately.
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